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Toward a New Method for Constructing Expander Graphs and Their Applications
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(English title) Application of Graph Algorithms in Social Data Analysis



s 10 B AN GRAERSY:) Masato Mimura (Tohoku University)

A A Wb [ 2R F— L R L BERREE

WEZE « ARREE L ZDEMRDOMDIND AV —20 T TN 7 AN B — RN T 5 FIETAE4 TH
Do AFEHETIZ, ARBEOIZEE LAERROINZELHE LI-L X2, TELHRTAY =277 7DFN0
EDORRELEDY 5 a5, TOBR, ARFEOMmRE L THON D EREFEANNTL D,

Title: “Expanders, finite groups and infinite groups”

Abstract: One well-known way of constructing expanders is to take Cayley graphs of a certain
sequence of pairs of finite groups and generating sets. In this talk, I will discuss how changing
generating sets affects the resulting Cayley graphs for a fixed sequence of finite graphs. Here, the

"limit groups" of finite marked groups play a key role.
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Title: “Derandomization and Expander Graphs”

Abstract: We can design efficient randomized algorithms for various problems including graph
reachability, polynomial identity testing, checking matrix multiplication, and approximate counting.
On the other hand, it is not known whether there exists a deterministic algorithm with the same
running time for them. One possible way to obtain such a deterministic algorithm is to eliminate
the randomness of randomized algorithms. This transformation is called derandomization, which
has been a fundamental topic in theoretical computer science. In this talk, as an application of
expanders in theoretical computer science, we introduce the technique of derandomization based on

expanders.
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Title : “Application of Graph Algorithms in Social Data Analysis”

Abstract : Transactional data related to economic and social activities are increasingly being
analyzed. We have numerically analyzed data of one million Japanese firms' transaction as
large-scale graph-structured data and modeled its money flow as a transport system.

In numerical analysis of graph data, algorithms can be applied efficiently if the graph is sparse. For
example, we can apply the eigenanalysis of adjacency matrices efficiently by taking advantage of
the sparsity of the graph, and it has been used to compute node rankings or some centrality
analysis. We can also use the sparsity to extract feature points of the graph, such as articulation
points and edges. These analysis brought us the results that the network is small-world network,
which means distance between firms is short, that the motif structure is significantly biased
comparing to the random graph, and that the distribution of the number of transactions follows a
power distribution.

Also, we model a nonlinear transport equation defined on the inter-firm transaction network,
based on the real data of the money-flow between firms. The steady-state solution of this transport
equation emerges instability depending on the nonlinear parameter and graph structure. We
evaluated the linear stability of the solution by performing the eigenanalysis to the transition
matrix.

This presentation will take the form of including an introduction to the graph algorithm used in

the analysis
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it 2 4 b vt Types of Graph Laplacian Matrices and their Roles in Cooperative Control of Multi-
Agent Systems

BEZL : In the field of systems and control, many cooperative control problems of multi-agent systems
have been actively studied in the past two decades. Common in the formulation and resolution of these
problems, a graph Laplacian matrix plays a key role. A graph Laplacian matrix is an important
representation of graph topology, which describes the interconnection structure of the agents.
Depending on the field of the entries, there are three types of Laplacian matrices: standard Laplacian
(nonnegative diagonal entries and nonpositive off-diagonal entries), signed Laplacian (arbitrary real
entries), and complex Laplacian (arbitrary complex entries). This talk will introduce these different
types of Laplacian matrices, and their roles in modeling and solving different sets of cooperative
control problems. Particular attention will be given to their algebraic properties that are fundamental

in characterizing stability and performance of the respective solution algorithms.
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it 2 4 b L Mixed regular graphs to induce periodic quantum walk
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it 2 4 b vt Generalized Laplacian induced by Grover walk
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it 2 4 b v @ Complexity of Explicit Constructions and Range Avoidance Problems
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i 2 4 b vt A limit theorem for Betti numbers of random simplicial complexes

BEZE : The Erdds—Rényi graph model has been extensively studied since the 1960s as a typical random
graph model. Recently, the study of random simplicial complexes has drawn attention as a higher-
dimensional generalization of random graphs. In this talk we introduce a class of homogeneous and
spatially independent random simplicial complexes, and discuss the asymptotic behavior of their Betti
numbers. This result extends the law of large numbers for Betti numbers of Linial-Meshulam

complexes, obtained in an earlier study by Linial and Peled. Time permitting, we will also discuss the
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convergence of the empirical spectral distributions of their Laplacians. A key element in the argument
is the local weak convergence of simplicial complexes. Inspired by the work of Linial and Peled, we
establish the local weak limit theorem for homogeneous and spatially independent random simplicial

complexes.

R M IEBA (TAEBERY: BEHEERR)
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it 2 4 b Lt Construction of high-girth expander graphs based on quaternions, generalization to
octonions and their implementation

BEZE : Following earlier works by Y. Thara and then J.-P. Serre, in 1986 Lubotzky-Philips-Sarnak and
G. Margulis introduced the breakthrough construction of “Ramanujan graphs”. Based on the
arithmetic of quaternions, they provided explicitly the first optimal expanders, in a precise sense.
Another remarkable property that these graphs display is their large girth (length of a shortest cycle).
They still hold the record of having the largest girth. This property alone has various applications:
construction of LDPC error-correcting codes, better design of “local” algorithms, help obtaining
better bounds in several instances of algorithms in graphs. In this talk, we will present a variant and a
generalization to octonions of the construction of Ramanujan graphs, discuss their new properties,

their implementation and show some experimental observations.



